Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomater Adv ; 152: 213481, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37307771

RESUMO

Polysaccharides are naturally occurring polymers with exceptional biodegradable and biocompatible qualities that are used as hemostatic agents. In this study, photoinduced CC bond network and dynamic bond network binding was used to give polysaccharide-based hydrogels the requisite mechanical strength and tissue adhesion. The designed hydrogel was composed of modified carboxymethyl chitosan (CMCS-MA) and oxidized dextran (OD), and introduced hydrogen bond network through tannic acid (TA) doping. Halloysite nanotubes (HNTs) were also added, and the effects of various doping amount on the performance of the hydrogel were examined, in order to enhance the hemostatic property of hydrogel. Experiments on vitro degradation and swelling demonstrated the strong structural stability of hydrogels. The hydrogel has improved tissue adhesion strength, with a maximum adhesion strength of 157.9 kPa, and demonstrated improved compressive strength, with a maximum compressive strength of 80.9 kPa. Meanwhile, the hydrogel had a low hemolysis rate and had no inhibition on cell proliferation. The created hydrogel exhibited a significant aggregation effect on platelets and a reduced blood clotting index (BCI). Importantly, the hydrogel can quickly adhere to seal the wound and has good hemostatic effect in vivo. Our work successfully prepared a polysaccharide-based bio-adhesive hydrogel dressing with stable structure, appropriate mechanical strength, and good hemostatic properties.


Assuntos
Hemostáticos , Compostos Inorgânicos , Humanos , Adesivos/farmacologia , Aderências Teciduais , Hidrogéis/farmacologia , Hemostasia , Hemostáticos/farmacologia , Hemostáticos/química , Polissacarídeos/farmacologia , Compostos Inorgânicos/farmacologia
2.
Cancers (Basel) ; 15(3)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36765522

RESUMO

Breast cancer (BC) is a representative malignant tumor that affects women across the world, and it is the main cause of cancer-related deaths in women. Although a large number of treatment methods have been developed for BC in recent years, the results are sometimes unsatisfying. In recent years, treatments of BC have been expanded with immunotherapy. In our article, we list some tumor markers related to immunotherapy for BC. Moreover, we introduce the existing relatively mature immunotherapy and the markers' pathogenesis are involved. The combination of immunotherapy and other therapies for BC are introduced in detail, including the combination of immunotherapy and chemotherapy, the combined use of immunosuppressants and chemotherapy drugs, immunotherapy and molecular targeted therapy. We summarize the clinical effects of these methods. In addition, this paper also makes a preliminary exploration of the combination of immunotherapy, radiotherapy, and nanotechnology for BC.

3.
ACS Appl Mater Interfaces ; 13(2): 2245-2255, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33416320

RESUMO

Self-disinfecting textile materials employing combined photodynamic/photothermal effects enable the prevention of microbial infections, a property that has great potential in healthcare applications. However, smart textiles with stimulus responses to ambient temperature are marvelous materials for enhancing their photothermal applications with additional functions. It is still challenging to realize vivid and contrasting color changes as temperature indicators. Herein, through the in situ growth of PCN-224 metal-organic frameworks (MOFs), the electrospraying of a Ti3C2 MXene colloid, and the screen printing of a thermochromic dye, a smart photothermochromic self-disinfecting textile has been fabricated. An antibacterial inactivation study revealed 99.9999% inactivation toward gram-negative (Escherichia coli ATCC 8099) and gram-positive (Staphylococcus aureus ATCC 6538) bacteria in 30 min. A mechanism study revealed that light-driven singlet oxygen and heat are the main reasons for bacterial inactivation. Interestingly, the fabrics presented photothermal effects not only under a handheld 780 nm NIR laser but also under visible Xe lamp (λ ≥ 420 nm) illumination. The color of the fabrics (S-CF@PCN0.08) changed completely from dark green to dark red when the temperature exceeded 45 °C under Xe lamp illumination. Furthermore, the photothermochromic effect occurred in just 1 s under a 780 nm laser. Taken together, this smart photothermochromic self-disinfecting textile permits a new way to feedback the timely signal of temperature by color change and provides novel insights into the development of self-disinfecting textiles.


Assuntos
Antibacterianos/química , Corantes/química , Desinfecção/métodos , Estruturas Metalorgânicas/química , Têxteis/microbiologia , Titânio/química , Antibacterianos/farmacologia , Infecções Bacterianas/prevenção & controle , Corantes/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/efeitos da radiação , Temperatura Alta , Humanos , Luz , Estruturas Metalorgânicas/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/efeitos da radiação , Temperatura , Titânio/farmacologia
4.
Food Chem ; 343: 128472, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33139121

RESUMO

Cadmium is a toxic environmental pollutant that is readily absorbed by rice grains and poses serious threats to human health. The selection and breeding of rice varieties with low cadmium accumulation is one of the most economical and ecological methods to reduce cadmium exposure. In this study, two different indica rice grains under cadmium stress were subjected to mass spectrometry-based metabolomics analysis for the first time. When the cadmium concentration increased in rice grains, most carbohydrates and amino acids were down-regulated, except myoinositol that can prevent cadmium toxicity, which was up-regulated. d-Mannitol and l-cysteine were up-regulated with the increase of cadmium concentration in low-cadmium-accumulating rice. Also, organic acids were activated especially 13-(S)-hydroperoxy-9(Z),11(E),15(Z)-octadecatrienoicacid that is related to the alpha-linolenic acid metabolism and jasmonic acid production. The determination of biomarkers and characterization of metabolic pathways might be helpful for the selection of rice varieties with low cadmium accumulation.


Assuntos
Cádmio/toxicidade , Oryza/efeitos dos fármacos , Oryza/metabolismo , Poluentes do Solo/toxicidade , Aminoácidos/metabolismo , Biomarcadores/análise , Biomarcadores/metabolismo , Cádmio/farmacocinética , Metabolismo dos Carboidratos/efeitos dos fármacos , Ciclopentanos/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Ácidos Linolênicos/metabolismo , Peróxidos Lipídicos/metabolismo , Manitol/metabolismo , Espectrometria de Massas , Metabolômica/métodos , Oryza/química , Oxilipinas/metabolismo , Estruturas Vegetais/química , Poluentes do Solo/farmacocinética
5.
RSC Adv ; 8(26): 14221-14228, 2018 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-35540748

RESUMO

A series of Ag-K/MnO2 nanorods with various molar ratios of K/Ag were synthesized by a conventional wetness incipient impregnation method. The as-prepared catalysts were used for the catalytic oxidation of HCHO. The Ag-K/MnO2 nanorods with an optimal K/Ag molar ratio of 0.9 demonstrated excellent HCHO conversion efficiency of 100% at a low temperature of 60 °C. The structures of the samples were investigated by BET, TEM, SEM, XRD, H2-TPR, O2-TPD and XPS. The results showed that Ag-0.9K/MnO2-r exhibited more facile reducibility and greatly abundant surface active oxygen species, endowing it with the best catalytic activity of the studied catalysts. This work provides new insights into the development of low-cost and highly efficient catalysts for the removal of HCHO.

6.
Int J Mol Sci ; 18(10)2017 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-28953215

RESUMO

The environmental damage caused by cadmium (Cd) pollution is of increasing concern in China. While the overall plant response to Cd has been investigated in some depth, the contribution (if any) of protein phosphorylation to the detoxification of Cd and the expression of tolerance is uncertain. Here, the molecular basis of the plant response has been explored in hydroponically raised rice seedlings exposed to 10 µΜ and 100 µΜ Cd2+ stress. An analysis of the seedlings' quantitative phosphoproteome identified 2454 phosphosites, associated with 1244 proteins. A total of 482 of these proteins became differentially phosphorylated as a result of exposure to Cd stress; the number of proteins affected in this way was six times greater in the 100 µΜ Cd2+ treatment than in the 10 µΜ treatment. A functional analysis of the differentially phosphorylated proteins implied that a significant number was involved in signaling, in stress tolerance and in the neutralization of reactive oxygen species, while there was also a marked representation of transcription factors.


Assuntos
Cádmio/toxicidade , Oryza/fisiologia , Fosfoproteínas/metabolismo , Proteínas de Plantas/metabolismo , Plântula/metabolismo , Estresse Fisiológico , Motivos de Aminoácidos , Poluição Ambiental/efeitos adversos , Regulação da Expressão Gênica de Plantas , Espaço Intracelular , Oryza/efeitos dos fármacos , Fenótipo , Fosfoproteínas/química , Fosfoproteínas/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Ligação Proteica , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Transporte Proteico , Proteoma , Proteômica/métodos , Plântula/efeitos dos fármacos , Plântula/genética
7.
ACS Appl Mater Interfaces ; 6(7): 5144-51, 2014 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-24606719

RESUMO

A novel phenolic biosensor was prepared on the basis of a composite of polydopamine (PDA)-laccase (Lac)-nickel nanoparticle loaded carbon nanofibers (NiCNFs). First, NiCNFs were fabricated by a combination of electrospinning and a high temperature carbonization technique. Subsequently, the magnetic composite was obtained through one-pot Lac-catalyzed oxidation of dopamine (DA) in an aqueous suspension containing Lac, NiCNFs, and DA. Finally, a magnetic glass carbon electrode (MGCE) was employed to separate and immobilize the composite; the modified electrode was then denoted as PDA-Lac-NiCNFs/MGCE. Fourier transform infrared (FT-IR) spectra and cyclic voltammetry (CV) analyses revealed the NiCNFs had good biocompatibility for Lac immobilization and greatly facilitated the direct electron transfer between Lac and electrode surface. The immobilized Lac showed a pair of stable and well-defined redox peaks, and the electrochemical behavior of Lac was a surface-controlled process in pH 5.5 acetate buffer solution. The PDA-Lac-NiCNFs/MGCE for biosensing of catechol exhibited a sensitivity of 25 µA mM(-1) cm(-2), a detection limit of 0.69 µM (S/N = 3), and a linear range from 1 µM to 9.1 mM, as well as good selectivity and stability. Meanwhile, this novel biosensor demonstrated its promising application in detecting catechol in real water samples.


Assuntos
Técnicas Biossensoriais/métodos , Indóis/química , Lacase/química , Nanocompostos/química , Níquel/química , Fenóis/análise , Polímeros/química , Técnicas Biossensoriais/instrumentação , Catecóis/análise , Enzimas Imobilizadas/química , Limite de Detecção , Nanofibras/química , Nanopartículas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA